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Note that the same result could have been obtained by applying the formulae and theorems 
derived from the foregoing general analysis. 
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SEPARATION OF MOTIONS IN NON-LINEAR OSCILLATORY SYSTEMS 

WITH RANDOM PERTURBATIONS* 

A.S. KOVALEVA 

An asymptotic procedure is developed for the separation of motions in 
non-linear stochastic systems which are reducible to standard form with 
rotating phase. It is shown that the slowly varying component of the 
motion can be approximated by a diffusion process. An example of a body 
moving in a periodic force field under the action of 
is studied. 

random disturbances 

Previous publications /l-3/ have investigated the dynamics 
which are reducible to standard form 

of randomly perturbed systems 

2‘ = eF (2, 5 (t)) + &*c (2, 5 (t)), r (0) = a E R, (0.4) 

Here g(t) is a stochastic process with values in HI, and E is a small parameter. It was 
Proved that if the coefficients of the system satisfy certain conditions (the most general 
statement of which may be found in /3/), the solution t(t,~) of system (0.1) is weakly con- 
vergent /4/ to a diffusion process x0 (T) - the solution of the stochastic differential 
equation 

dr, = b (s,)dr + o (zo)dw, .zo (0) = (I; r = ?t (0.2) 

where w (T) is an Z-dimensional standard Wiener process, and the coefficients b and (r are 
evaluated by averaging certain moment characteristics of the coefficients of system (0.1). 
In other words, one can identify a "slow" diffusion component in the motion of system (O.l), 
upon which small (in the weak sense) and rapid perturbations are superimposed. Considerable 
efforts have been made in the literature to justify the passage to the limit from (0.1) to 
(0.2); a detailed bibliography may be found in /3/. Applications of this approach to some 
problems of stochastic dynamics in non-linear oscillatory systems are discussed in 15, 6f. 
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1. We shall obtain results analogous to those presented in /3/ for systems whose dynamics 
are described by the equations 

2’ = EF (5, 8, 5 (6)) + E% (X, e), X(o) = U E R, 

8’ = o (5) + EH (Z, 8, E(e)) i- E2D (X, e), e (0) = o E RI 

(1.1) 

To construct the solution we shall employ the asymptotic procedure of diffusion approxi- 

mations /7/, developed in /3/ for analysing systems of type (0.1). 
We recall the necessary definitions from /7/. Let f(t) be a stochastic process with 

values in R,, defined in a probability space /0/ (for brevity we shall indicate the dependence 

of f on time only). Now let M,f (t) be the conditional expectation of the process f (t) 
given s< t /a/. It is assumed that f(t) is right continuous, vanishes outside some 
finite interval tE [O, Tl and snpt M If (t)l( L-O. If f(t) has these properties, we write 

f (t) E a. 
We now introduce the operator Le and its domain of definition D (Le) /7/. We shall 

say that f= D (Le) and L’f = g, if f, gr 0 and 

linl M 16-l [MJ(? -4. 6) -I(T)] -g(7)] : (J 
a-*)+ 

From (1.2) it follows that /3, 7/ 

Ttb 

Mrf (7 + 6) - f (7) = 1 M$f (u) du 
T 

(1.2) 

(1.3)’ 

In particular, if f (4 = f (.z, (4), where rz. (r) is a solution of some perturbed system, 
then formula (1.3) indicates a way of calculating the functional M,f(z,(z f 6)) on paths of 
the system. If f (z) = f (Gl (@)I where r,,(r) is a solution of Eq.(0.2), then /3, 7, 8/ 

Le=L=b(z)&++T~A(z)-$ A=d 

r+b 

(1.4) 

M,f (10 (z. + 6)) - f (~0 (7)) = 1 M&f (JO (UN dw (1.5) 
r 

Relations (1.3) and (1.5) indicate a way of calculating and comparing the functionals on 

the paths of the perturbed and diffusion systems. As shown in /7/, if, given any sufficiently 
smooth function f(z) of compact support, one can find a function f" (r) such that 

lim M Ife(r)- f(zz@))l = 0 
8-O 

(1.6). 

lim M 1 LEf”(t)- Lf(r,(T)) ] = 0, r E[O, T] 
e-0 

and for e E (0, soI, r E [O, T1 the sequence s,(r) is weakly compact /4/, then the process 

re (r) converges weakly as EGO to the diffusion process so(z) with To (0) = & (0) = a. 
Different constructions of approximating operators L have been proposed /l-3/ for systems 

of type (0.1). Using the technique of /3/, we shall construct a suitable operator for a 
system of type (1.1). 

2. Henceforth we assume that o (z) > o,, > 0, MF (x, 6, 5 (6)) = MH (5, 8, 5 (6)) = 0 for 
fixed x. Other -estrictions on the coefficients of system (1.1) will be specified as the need 

arises. 
Put z = et, and let r(t, E)=re((Z), U(t, e) = U,(r) be a solution of system (1.1). Define 

f (z, 47 to be a sufficiently smooth function on paths of system (l.l), vanishing outside 
some bounded region D : {XE S,r E [O, n}. Let f"(r) be a function related to f(r, z~((z)) by 

fe (4 = f (.t, ze) + efl h ze, 0,) + &2fz (T, ze, & (2.1) 
where 2, = re (r), ee = e, (T), with the coefficients fl,fz so chosen as to satisfy (1.6). 

Following /3/, we write 

Lefe (z) = E-* (f,‘F + &=fr) + (fr + fixF + fx’G + HL;fl + oL:fz) + 

e (f,c + f,xF + f;S + DLe’fl+ HLeef,) + 
(2.2) 

e2 (LG + far + Db”fi) + cs. . . 

the prime denotes transposition; function arguments are omitted. 
defined by analogy with Le: 

The operator Lee is 
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L:f = jii A-l [Mef (T, x, 0 + A) -f (7, x, O)] (2.3) 

where the arguments t, I are considered here as fixed parameters. The equality is understood 
in the weak sense of (1.2). 

Let us construct the function fl in such a way as to make the coefficient of s-1 vanish 
(all equalities are understood in the weak sense). Choose f1 in the form 

f, (~7 I, 0) = 01-l (x) f,’ (T, .r) s MoF (s, u, 5 (u)) du 
0 

(2.4) 

Then, by definition (2.3), 

It follows from the properties of conditional expectations /0/ that 

tl+Ll 
LaPfl(r,z.O)=- - o~l(~)f.Y'(r,z)~~ i M$(r, u,~(u)) du = 

- 6’ (z) f,’ (7, z) &. @,E (e)) 

i.e., the first term in (2.2) vanishes. The function f2 is constructed in such a way that 
the second term in (2.21 does not contain secular terms in 6. We define 

m R 

Ij = 1 [MeQj (T, 5, u) - MQj (~3 ~3 u)] du, S, = S [MQj (it 1, U) - Qj (~3 s)] du 

Q, = f, (T’ x) + fix (T, I, u) F (5, u* Eb,, = fT (TV 4 i 

f M, If, (7, J) F, (2, z, 5 (#I, dzF (G ~3 E (~1) 
u 

Qz = f,' (t, x)[- F, (17 u, E(u)) H (~7 ut E (~1) -t G (~2 u)l 
T 

Qj(T,r) = lim f s MQj(z,z,u) du, F, = co_lF 
T-m ” 

It is assumed that the limits (2.7) exist uniformly in 7, sED. 
Substituting (2.4) and (2.6) into (2.2), we obtain 

(2.5) 

(2.6) 

(2.7) 

Here R,,R, are the coefficients of E,E~ in (2.2). All terms on the right of (2.8) 
may be treated as operators acting on f (+, ze (T)), 4 = zE (z), Be = Be (r). 

Let us change the form of the principal terms of the expansion (2.8). Utilizing the 
properties of the conditional expectation /a/, we obtain 

For sufficiently smooth F, o, we have 

(2.9) 

(2.10) 



m 

A(x) = ;_I f i de s A (s, 8, u) du 
0 ” 
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K (5, 0, u) = MU’,, (x. u, 5 (u)) F (5, 0, % @))I 

_4 (5, 8, 4 = M IF, (5, 4 % (u)) F’ (5, 8, E (e))l 

Accordingly, 

(2.11) 

where & (II, 5) is the coefficient of j, in formula (2.6). Thus, 

L=b'(+$++TrA(r)-& b=K,+K, (2.13) 

Following /3/, it can be shown that conditions (1.6) will hold if M I fj h G 0) I =c m, 
M I Rj (z, 5, 0) I < 00 for e fz (--=I, CO), T, I ED, j = 1,2. To estimate the relevant terms, we 
will specify in more detail the restrictions on the coefficients of the system. We shall 
assume throughout the sequel that the following conditions are satisfied: F, H may be expressed 
as 

F (5, 0, 5 w = b (2, 6 E (e), H (2, 8, E (0)) = h (5, 0) 5 03 (2.24) 

where the random peturbations g(6) belong to one of two types (Conditions A): 

1) E (6) is a stationary right continuous normal Markov process with zero mean; 

2) E (6) is an almost surely bounded stationary process with sero mean, satisfying a 
uniformly strong mixing condition /4/ with coefficient q(u) such that 

with 

The coefficients II = (F,,H,,G,D, o) satisfy the following conditions (Conditions B): 
1) the functions U are bounded and periodic or uniformly quasiperiodic in 8 for I3 E(-co, 
uniformly in sES; 
2) the functions U are continuous in x for all XGZ R, uniformly in eE(--oo,oo); 
3) the derivatives of the functions U and the second derivatives of the functions F,, o 
respect to x are continuous for x~ R, and bounded for ZE S uniformly in8 E(--oo, 00); 
4) the limits (2.10), (2.11) exist uniformly in x for xE S. 
Let us clarify Conditions A for the case in which F,(O) is a stationary normal process. 

Calculating the conditional expectation, we obtain /9/ 

ble% (u) = x (e - 4 5 (e), x (e) = KE (eY% (0) 

where &(e) is the correlation function of the process E(O), and 

(2.15) 

Substituting (2.14)-(2.16) into (2.4), we obtain M If,(z, x,0) I< 00. Similar arguments 
lead to the conclusion that if Conditions A and B are satisfied, then 

MIRj(~,X,O)l<~, MIZj(.~,~,e)I<m,j=l,2 (2.17). 

in the region indicated above. Detailed estimates of the conditional expectations may be 
found in /3/. An analogous estimate for the deterministic terms 

ISj(r,z,8) I<m, i=f,2 (2.18) 

follows directly from condition 4 and may be constructed in the same way as for deterministic 
systems /9/. 

Thus, conditions (1.6) are satisfied. Weak compactness of the sequence x~((z) is proved 
using the same arguments as for systems in standard form /3/. 

Let x,,(t) be a solution of Eq.fO.2) for the operator L defined by (2.9)-(2.13). It 
follows from Conditions B that the coefficients of L are continuous and continously 
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differentiable with respect to x in any compact set KcR,. Let us assume additionally that 
L is uniformally parabolic /lo/ in the region of interest and that the process x0(~) satisfies 
the regularity conditions /ll/. Then /11/ a unique solution x0(~) of the limiting Eq..(0.2) 
exists. It was proved in /3, I/ that (1.6) implies that the finite-dimensional distributions 
of the processes 4 (t) and x,, (T) are convergent and, as a corollary, that ~~((7) and so(z) 
are weakly convergent. 

For functionals of the type @'e = M,,.cp(z,(.ct)) it is convenient to construct a direct 
estimate of the proximity of Q to m0 = Mo,,cp(s,,(q)),z,~ LO, ?'I. 

Let j(t,z) be a solution of the Cauchy problem 

afiaz + Lf = 0, f (q, 4 = 9 (4 (2.19) 

Let 'p (5) E C, be a function with compact support defined for x E.K. If the operator 
Lhas the properties described above,then a solution of problem(2.19)exists and f(z,z)E C,,, for 
z E 10, T], XE K /lo/. Since so(~) is a regul+r prqcess, one can always choose '2' and K in 
such a way that =o (T) E K for all O,<T<T,< T provided that z,, (0) = a E int K /ll/. 
Under these conditions, f (z, x) = M,,.cp (z,, (q)) 18, W . 

If the process &(%)is continuous, a number TK exists such that xe((r)fZ K for 0 <<z ,< TK, 
4 (0) = a. Consequently, when O<T<Tf<TK all the constructions of Sect.2 remain valid. 

Let X,(Z) = 2, I&(%) = 8, (x,8) = yf? R,,,. Then, in view of (1.51, (2.1) and (2.12), we 

can write 

MT, J (~7 XE (v)) - f (~9 4 + W, ,F bt. YE h)r 4 = (2.20) 
v Tf 

1 M,. 2 tfu (~7 2~ (u)) + Lf (~9 5, @))I du + E 5 M,, ,R Cut YE @‘h E) du 
r 

y, W = (~8 (u), 0, h,; E R,+,, 

F (t, y, 8) = fi (~7 I, 0) + Efz (z, x, e), R (~9 y, E) = R, b, 5, 0) i 
ERB (z, X, 0) 

By estimates (2.17) and (2.18). 

I M,,J (q, xe (4) - f (~9 4 I < 8 [G + C, (q - 41 (2.21) 

where C, >O, C, >O are constants independent of e. At the same time, it follows from (2.19) 
that f (rf, 5. (rf)) = ‘p (4 (q)). Thus, 

I M,.,cp (x, (4) - &.cp (G W) I < e [Cl + Cz (71 - 41 (2.22) 

Putting r = 0, z = a, we get 

I me - @, I < e CC, + C2d (2.23) 

Using the regularity of X,,(T) and Chebyshev's inequality, it can be shown that estimates 
(2.22), (2.23) imply regularity for the process z,(z) (the proof is carried out along the same 
lines as in /ll, Chap.3, Sect.4/). Estimate (2.23) remains valid for all finite values of 'f. 

Remarks. 1. For systems in standard form, one must put 8= t, O’= 1. When that is done 
formulae (2.9)-(2.11) reduce to standard formulae /l/. 

2. All the transformations remain true if the coefficients of the system have the form 
F T F, (2. 8, E (8)) + F, (5 t. E (Q) and so on, where the random perturbations E (8) and : (t) are 
indepenent. In the expansion (2.1) we must then put f, = f,' (r, +, 8) + f? (T. +, t). i = 1, 2 and con- 
struct the functions f,' and jia by the above rules, independently of one another. 

3. If the coefficients depend on slow time z= eat, then all transformations remain true. 
In that case r may be considered as an additional slow variable defined by the equation T'= @. 
For systems in standard form the results are identical with those obtained in /2, 3/. 

3. Consider the following model example: the motion of a point in a weak force field. 
Suppose that the equations of motion, allowing for the comparative smallness of the disturbing 
the driving factors, reduce to the form 

8” = off ~3) -E kb + 5 (we’ + e [eu (t) + 9 (t)]; e (0) = 0, (3.1) 
IY(O)=y; b>O 

or to the analogous form with S(O) replaced by 5(t). 
Here 0 is the coordinate of the point, f(8) is a Zn-periodic function characterizing 

the force field, u(t) is a T-periodic function characterizing the external energy source, and 
E,5 and 4 are perturbing factors. The perturbation E(8) usually denotes the resistance of 
the external medium, c(t) denotes fluctuations in the damping coefficient in the damping 
mechanisms, and q(t) denotes fluctuations in the external load. The different powers of the 
small parameters mean that the effects of the deterministic and random factors are taken into 
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account to within the same accuracy (see (2.6)). 
Let us see how the nature of the scattering of dissipative forces affects the dynamics 

of the system. Reducing (3.1) to standard form, we have 

9'= I, 8 (0) = 0 (3.2) 
2' = e [-5 (6) z + rl (t)] + eB lu (t) + f (9) - W, z (0) = Y 

Let us assume from now on that 

We shall also assume that 5 (6). 5 (t) and t)(t) are independent stochastic processes 
satisfying Conditions A. Since the perturbations are independent, all the arguments of Sect. 
2 remain valid, provided that the averaging is performed with respect to the appropriate 
argument. For Eq.(3.2) we have 

K (2) = 0, A (z) = .* (2) (3.3) 

a’(,)=~‘~de_~c;(r,e,u)dn,-~5dt 1 a,(r,t,s)ds 
0 -cc 

ax = nf ~5 (e) E (U)~ 3 = xE (e - IL) =, a? = iv4q (t) ‘1 (q = K? (f - a) 

a* (tl = a,,3 + aE%, aqz = s, (O), lzk2 = s, (0) 5 

Here K;, Ii rl' xc are the correlation functions and St' s,, SC the spectral densities of the 

processes s (e), ‘1 (t) and 5(t), respectively. 
Thus, the solution z (G 8) of Eq.(3.2) is weakly convergent to a solution Gl (t) of the 

stochastic differential equation 
dz, = (u. - bz,) dz + a (q) dw, z = e? (3.4) 

It follows from (3.4) that the average velocity of the point MI-Mz,(T)= oO. where e0 
is a solution of the unperturbed system 

do,ldr = Y,, -- bo,, co,, (0) = y (3.5) 

As it turns out, a more significant characteristic is the mean-square value of the 
velocity MP - Mz$ (7). The value of the functional UI,=M~,~Z~'(T) is determined by solving 
problem (2.19); the coefficients of L are determined by (3.3) and (3.4). After obvious 
reduction we obtain 

f (o,z) = PO (0) + p, (0) 2 + PP (0) 31 
P, (0) = --cr, (2uo + aE*) b-’ [(eb” - 1) - l/p (&” - i)l - V.+‘b-1 (#a - i), 

P, (0) = (Zu, + a$) b-1 (eba - eaba), P, (a) = $a’, s = o - z 

(3.6) 

Putting a=0 and 2 = Y, we obtain the mean-square value of the velocity at time 
The steady-state mean-square velocity (i.e., at 7--roe) is 

so = Ysb-* luo (Zu, + a$) + ba,,‘] (3.7) 

Strictly speaking, the convergence as 'c-00 must be established on a rigorous basis, 
as in systems in standard form /2, 3/; nevertheless, Eq.(3.7) can be used to estimate the 
comparative effect of the disturbing factors on the behaviour of the system. Thus, it follows 
from (3.6) and (3.7) that the perturbation E(6) does not affect the stability of the system. 
Moreover, at u,=O the perturbation E(6) has no effect whatever on the behaviour of the 
system, provided that z is sufficiently large. 

Consider system (3.1) with S(O) replaced by 6(t). Repeating all the previous arguments, 
we see that the process 6' =Z is weakly convergent to a solution of the equation 

dlo = (4 - Szo) dz + ax (4) dm, 20 (0) = y 
(fl = b - aEa/2. cq = aq* + np. aca = SE (0)) 

(3.8) 

Thus, the mean velocity is such that Mz-wO, where o0 
obtained from (3.5) by replacing b by (3. 

is a solution of the equation 

The mean-square value of the velocity Do = M,,#(r) has the form (3.6). The coefficient 
PO, P, p,. are determined by the formulae 

P, (I?) = * (e@ - a**)( P* (0) = e*y $,-b---n<, a=(~--‘T 
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Letting z-m, we get 

m, = % UX%)-' &a'+ Bus% B > 0, B1> 0 

Thus, the system is unstable if b < aga/2. The variance of the velocity at z-m,z&=o, 
also depends on ac. Consequently, the nature of the scattering of dissipative forces has a 
considerable effect on the dynamics of the system. 
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THE SELFCONSISTENT PROBLEM OF THE VIBRATIONS OF AN INFINITE STRING LOADED 

WITH A MOVING POINT MASS* 

L.E. KAPLAN 

The problem of the vibrations of a homogeneous infinite string loaded 
with a point mass, moving in accordance with an unknown law of motion, is 
considered. This is one of the simplest model selfconsistent problems 
(SPs) in the dynamics of one-dimensional distributed loaded Lagrangian 
systems /l/. A mathematical formulation of the problem is given and the 
conditions for the existence and uniqueness of a global solution are 
established. An analytical method, which in many cases produces an exact 
solution, is presented. As an illustration, the displacement of a point 
mass along a vibrating string, set in motion by an impulse communicated 
to the mass, is considered. Certain effects related to the reverse 
action of the radiation of the moving point mass (braking by the 
radiation) are explained. 


